



### Solution to the Personalized Accommodation Review Ranking Task via Tabular Data Approach

Yu Tokutake

#### The University of Electro-Communications

### Outline

#### Introduction

User-generated Review, Personalized Review Ranking

#### RecTour 2024 Challenge

Task Description, Dataset, Evaluation Metrics

#### Solution

Basic Strategy, Candidate Generation, Candidate Ranking

**Experiment** Baseline, Results

Conclusion

### Outline

#### Introduction

User-generated Review, Personalized Review Ranking

**RecTour 2024 Challenge** 

Task Description, Dataset, Evaluation Metrics

Solution

Basic Strategy, Candidate Generation, Candidate Ranking

Experiment

Baseline, Results

Conclusion

# **User-generated Review**

#### Information to support user's decision-making



The number of reviews is increasing, and it is difficult for users to examine all reviews.

2024.10.19

## **Personalized Review Ranking**

Prioritize displaying reviews that are useful to the user



### **User-generated Review Dataset**

#### The accommodation review dataset is on a smaller scale.

| Dataset              | Domain        | # Reviews |
|----------------------|---------------|-----------|
| Amazon Reviews'23    | E-commerce    | 571.5M    |
| Yelp                 | Restaurant    | 7.0M      |
| Booking.com Crawling | Accommodation | 515K      |

Booking.com hosted a competition, RecTour 2024 Challenge, using a comprehensive accommodation review dataset.

### Outline

Introduction

User-generated Review, Personalized Review Ranking

#### RecTour 2024 Challenge

#### Task Description, Dataset, Evaluation Metrics

Solution

Basic Strategy, Candidate Generation, Candidate Ranking

Experiment

Baseline, Results

Conclusion

# **RecTour 2024 Challenge**

#### **Overview**

- Match reviews to users and accommodations
- Given 2M reviews

### This study

- Present a solution develop by Team ringo that won first place
- Employ tabular data approach

# **Challenge: Task Description**

### Task

- Predict the reviews generated by users for the accommodations they stayed at
- Submit the top 10 reviews

### Application

Applying the developed algorithm to reviews of accommodations where users have not yet stayed can provide reviews that are close to the users' opinions.

# **Challenge: Dataset**

#### Actual review data on the Booking.com platform

| Data    | Description                                                                           |
|---------|---------------------------------------------------------------------------------------|
| Users   | Information about users and accommodations                                            |
| Reviews | Review information generated for accommodations                                       |
| Matches | Combinations of review by users for accommodations (only for training and validation) |

#### **<u>Objective</u>**: Predict the matches of test set

# **Challenge: Dataset Statistics**

|            | # Users   | # Accommodations | # Reviews |
|------------|-----------|------------------|-----------|
| Training   | 1,628,989 | 40,000           | 1,628,989 |
| Validation | 203,787   | 5,000            | 203,787   |
| Test       | 199,138   | 5,000            | 199,138   |

Note:

- Users were unique and correspond one-to-one with reviews
- Each accommodation had at least 10 reviews
- No common accommodations among the sets

# **Challenge: Evaluation Metrics**

The top 10 predicted reviews were evaluated to determine whether they matched the reviews generated by users.

• Mean Reciprocal Rank (MRR) @10

$$ext{MRR@10} = rac{1}{|U|} \sum_{u \in U} egin{cases} rac{1}{ ext{rank}_u} & ( ext{if } ext{rank}_u \leq 10) \ 0 & ( ext{otherwise}) \end{cases}$$

• Precision@10

$$ext{Precision} @10 = rac{1}{|U|} \sum_{u \in U} ext{I} \left[ ext{rank}_u \leq 10 
ight]$$

### Outline

Introduction

User-generated Review, Personalized Review Ranking

**RecTour 2024 Challenge** 

Task Description, Dataset, Evaluation Metrics

#### Solution

Basic Strategy, Candidate Generation, Candidate Ranking

Experiment

Baseline, Results

Conclusion

### **Solution: Overview**



# **Solution: Strategy**

#### **Employ tabular data approach**

- Tabular data approach
  - i. Feature extraction
  - ii. Build a supervised model that predicts whether a review was generated by a user for an accommodation
- Inspired by two-stage recommendation approach
  - i. Candidate generation
  - ii. Re-ranking

### Solution

#### **1** Candidate Generation



# **Candidate Generation: Strategy**

- Recent recommendation task
  - Huge number of users and item combination (10B ~ 100B)
  - Not all combination can be used for training and prediction
- This challenge
  - Constraints on the number of combination
  - All combination can be used as candidates

# **Candidate Generation: Procedure**

- 1. Join users (user\_id, accommodation\_id) and reviews (review\_id, accommodation\_id)
- 2. Merge matches (Add binary ground truth)
- $\rightarrow$  Formulate as a binary classification task

|            | # Candidates | # Positive | # Negative  | Positive:Negative |
|------------|--------------|------------|-------------|-------------------|
| Training   | 214,311,737  | 1,628,989  | 212,682,748 | 1 : 131           |
| Validation | 29,676,751   | 203,787    | 29,472,964  | 1 : 145           |
| Test       | 24,066,438   | 199,138    | 23,867,300  | 1 : 120           |

### **Solution**

#### **2** Candidate Ranking



#### Most of the features used are derived from the original data

| Туре          | Features                                          |  |  |
|---------------|---------------------------------------------------|--|--|
| User          | <pre>guest_type, guest_country, room_nights</pre> |  |  |
|               | accommodation_type, accommodation_country,        |  |  |
| Accommodation | accommodation_star_rating,                        |  |  |
|               | <pre>location_is_beach , location_is_ski ,</pre>  |  |  |
|               | <pre>location_is_city_center</pre>                |  |  |

#### **Review Features**



#### Added Features

- Aggregate features
  - Frequency of each accommodation
  - Average score of each accommodation
  - Review text length
- Sentiment analysis score using a RoBERTa-based model (only review\_title)

#### Added Features

One of the model variations used TF-IDF embeddings of user accommodation and review data.

- Concatenate features from original data:
   <field\_name>:<field\_value>\n
- Reduced to 100 dimensions each using ICA

### Outline

Introduction

User-generated Review, Personalized Review Ranking

**RecTour 2024 Challenge** 

Task Description, Dataset, Evaluation Metrics

Solution

Basic Strategy, Candidate Generation, Candidate Ranking

Experiment

Baseline, Results

Conclusion

# Experiment

EQ1 : Does performance improve by changing the number of negative candidates in the training data (candidates) or by adding TF-IDF embeddings as features?

EQ2 : How does the proposed method perform compared to the baseline methods?

The number of positives in the training set is very small compared to the negatives (1:131).

#### → Randomly undersampling of negative candidates

2024.10.19

RecTour 2024

# **Experiment: Baseline**

| Baseline      | Description                                         |  |
|---------------|-----------------------------------------------------|--|
| RAND          | Randomly select 10 reviews from possible candidates |  |
| Helpful Votes | Select top 10 reviews from the candidates           |  |
|               | <pre>based on review_helpful_votes</pre>            |  |
| LGBM          | Proposed method                                     |  |

LGBM changes the ratio *n* of negative to positive in training set.

•  $n \in \{1, 2, 10, 15, 20, 25, 30, 131\}$  (n = 131 is the original ratio)

# EQ1: LGBM w/o TF-IDF (Change n)



2024.10.19

RecTour 2024

### **EQ2: Comparison with Baselines**



RecTour 2024

# **EQ2: Comparison with Baselines**



#### **Helpful Votes**

- Many reviews are sparse.
- Helpful Votes < RAND

#### LGBM

Improved performance by using TF-IDF embedding as features

# **Insights and Reflections**

\*1: R. Igebaria, et al., "Enhancing Travel Decision-Making: A Contrastive Learning Approach for Personalized Review Rankings in Accommodations," arXiv:2407.00787, 2024.

• Room for improvement since LGBM did not outperform

the Booking.com-provided baseline

|              | LGBM w/ TF-IDF | Booking.com*1 |
|--------------|----------------|---------------|
| Precision@10 | 0.425          | 0.549         |

- Feature extraction was difficult
  - Could not express user preferences due to all users being unique (e.g., review perspective, average rating)

### Outline

Introduction

User-generated Review, Personalized Review Ranking

**RecTour 2024 Challenge** 

Task Description, Dataset, Evaluation Metrics

Solution

Basic Strategy, Candidate Generation, Candidate Ranking

Experiment

Baseline, Results

#### Conclusion

### Conclusion

#### Summary

- Propose review ranking algorithm using tabular data approach
- Improved prediction accuracy by devising training data and features (EQ1)
- Outperformed helpful votes performance (EQ2)

#### **Future studies**

- Improve undersampling methods
- Integration with other NLP approaches (e.g., LLM's fine-tuning)

# Thank you!

If you have any question, please contact tokutakeyuu@uec.ac.jp