Accommodation Review Ranking for Tourism Recommendation

Emrul Hasan, Chen Ding, Sajib Saha, Neelima Preeti and Abdul Halim

October 18, 2024

RecTour Challenge, ACM RecSys 2024, Bari, Italy

Outlines of the Presentation

- Definition of the problem
- Motivation
- Traditional approach and challenges
- Experiments and Results
- Conclusion

Problem definition

- Accommodation Review Ranking
- Rank Top 10 reviews for each accommodation
- Return the corresponding review Ids for each user-accommodation pair

user_id	Acco_id	rev_1	rev_2		rev_10
1	1	73	3	56	18

Photo is taken from booking.com

Motivation

- Reviews are considered as an important aspect of a product or service because user makes decisions based on reviews
- Top reviews influence the user's decision
- Reviews play an important role in user's interaction experience

Traditional approaches

- Review Score: Highest rating score is ranked at the top
- Helpness vote: Top reviews receive the highest helpfulness vote counts
- Time-based: Recent reviews are placed at the top positions

Limitation of the traditional method

 Sparse data-Most of the reviews don't receive the helpfulness vote or review scores

Time-based ranking doesn't reflect the users' true preferences.

Proposed Method

User and Item similarity search for ranking review

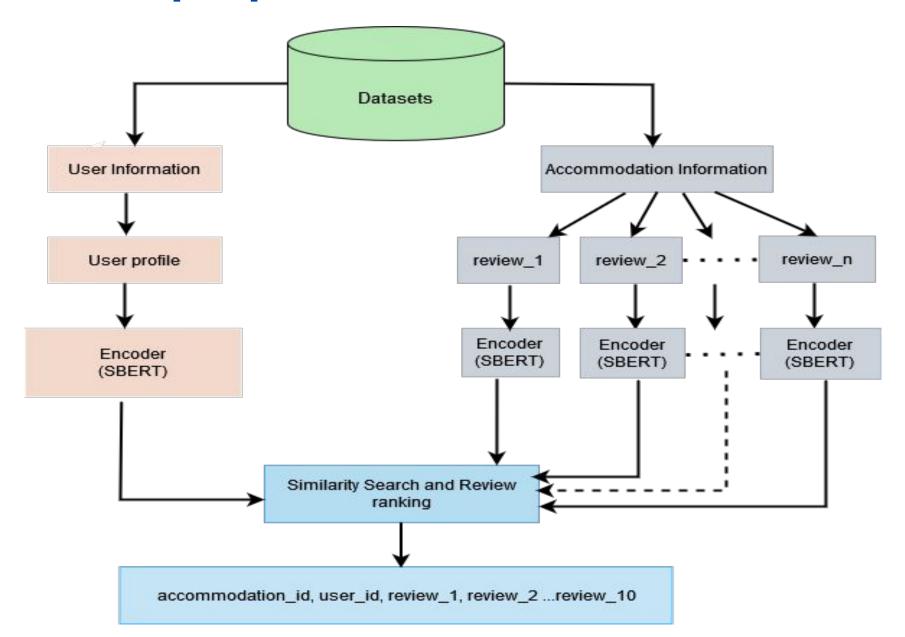
- User profile: User information, e.g., guest_country, guest_type, etc.
- Item profile: "ccommodation_type", "review_title", etc.
- Feature extraction- Sentence Transformer
- Similarity search Cosine Similarity
- Sorting- sort reviews according to the similarity

Feature Extraction

Sentence Transformer (SBERT)

- Transformer based sentence or text encoder model that represents the text as dense vector
- o "all-MiniLM-L6-v2": 6 attention layers, and 768 dim
- Contextual representation of the text

Similarity Measure


Cosine Similarity

- Score ranges from 0 to 1
- V and U user and item vectors

$$sim(u, v) = \frac{u \cdot v}{\|u\| \|v\|}$$

Workflow of the proposed method

Experiments

Exp No.	User information	Accommodation Information
1	NA	Helpfulness votes
2	NA	Review Score
3	"guest_type", "guest_country", "room_nights", "month", "acco_type", "acco_country", "acco_score", "acco_star_rating", "location_is_beach ", "location_is_ski", and "location_is_city_center"	"review_title", "review_positive", "review_negative", "re- view_score", and "review_helpful_votes".
4	"guest_type" and "guest_country"	Same as experiment 3
5	"guest_type" and "guest_country"	"acco_type", "acco_country", "acco_score", "acco_star_rating", " location_is_beach ", "location_is_ski", and "location_is_city_center"

Evaluation Metrics

- MRR (Mean Reciprocal Rank)@K
- Precision@K

MRR@K =
$$\frac{1}{|U|} \sum_{u=1}^{|U|} \frac{1}{\text{rank}_u}$$
 Precision@K = $\frac{\text{Total Number of relevant items in the top K}}{|K|}$

Results

Experiment No.	MRR@10	Precision@10
Exp 1	0.0735	0.2511
Exp 2	0.0735	0.2511
Exp 5(Proposed) Method	0.0787	0.2605

Ablation Studies

Features	MRR@10	Precision@10
Exp 3	0.0775	0.2582
Exp 4	0.0735	0.2511
Exp5 (Proposed Method)	0.0787	0.2605

Conclusion and Discussion

- We propose a review ranking method by leveraging user and item features
- Feature selection plays an important role in semantic similarity search
- Diverse set of features can provide better user and item representation
- Advanced embedding Model, e.g. LLM

Thank You!

Questions?

