Multi-funnel Recommender System for Cold Item Boosting

Ahmed Khaili, Adva Hadrian, Kostia Kofman, Edgar Cano, Andrew Mende

RecSys RecTour 2024, Bari, Italy

Agenda

- Introduction
- Background Ranking System
- Method Personalized Cold Start Properties Boosting

Experiment Design

Results

Next Steps

Since 2010. Booking.com has

4.5B+

guest arrivals

29M

total reported listings worldwide

7.8M

options in homes, apartments and other unique places to stav

140 offices in **70** countries over **5,000** employees in Amsterdam

> 175,000 destinations around the world

Car hire available in 145+ countries and pre-booked taxis in over **600+** cities across 130+ countries

30

different types of places to stay, including homes, apartments, B&Bs, hostels, farm stays, bungalows, even boats, igloos and treehouses

Curated bookable attractions and experiences in over 1.800 cities

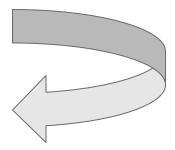
Introduction

Problem Formulation

- Growth of e-commerce shift the way customers discover and engage with products and services.
- Recommender systems **provide personalized suggestions**.
- Tend to rely on historical data.

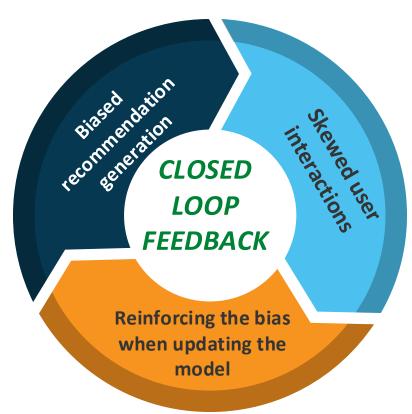
Hence

- Struggle with **new customers and items** due to a lack of data.
- Leads to suboptimal recommendations



Focus on **cold start problem in items only** \rightarrow in our case is the properties we suggest.

The Closed Loop Feedback



Two Sided Marketplace

Travelers

Looking for the perfect accommodation

New properties may lack reviews

Property Owners

Gain listing **visibility**

Offer better discounts, optimize listings, increase room availability

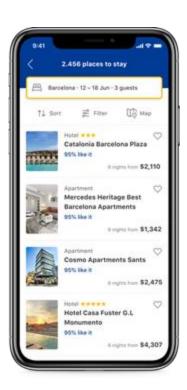
OUR GOAL

Address the property cold start problem by balancing two objectives:

- Increasing exposure for cold properties to enable them to compete with existing listings.
- Ensuring customers see the most relevant properties based on their specific search criteria.

Background on the Overall Ranking System

Ranking System



- Deep Cross Networks **DCN** for modeling complex interactions
- Embedding handling high-cardinality features in largescale systems

Relevant Features:

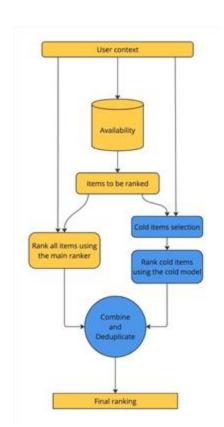
- **ItemID:** unique id of the property
- **ItemID CVR:** conversion rate from impression to book of item (for different time intervals)
- **Customer Context: s**earch context of the customer: length of stay, destination, device type etc.

Personalized Cold Start Properties Boosting

Multi-Funnel RS Architecture

Main funnel: Before cold introducing start pipeline.

Cold start funnel: Focus of this presentation.



Cold Item & Cold Model

Cold item definition:

 Properties in their first 30 days after joining the platform

Cold Model:

- Similar features and architecture to the main model while omitting itemID embedding
- itemID CVR features are kept during training, and replaced with an estimate based on warm items during inference.

Cold Model Against Baselines

Evaluation data	NDCG@10 Cold Model Relative to Main model	NDCG@10 Cold Model Relative to least expensive 25% ± 1.6%	
Cold reservations - Cold supply	0.8% ± 1.04%		
All reservations - full supply	-0.9% ± 0.03%	-	

Deduplication Logic

Main ranking

$$A = 0.7$$

$$B = 0.6$$

$$D = 0.4$$

Cold item ranking

$$E = 0.53$$

- Warm item
- Cold item Main model
- Cold item Cold model

Maximum of boosted items = 1

A = 0.7

$$B = 0.6$$

Experiment Design

Experiment Design

First - Traveler Facing Experiment

- **A/B Experiment:** Half of travelers exposed to boosting, half are not.
- **Hypothesis:** Negative short-term impact on conversion rates expected.

Second - Supply Facing Experiment

- **A/B Experiment:** Half of **cold** properties are boosted, the other half are not.
- **Hypothesis:** This will increase long-term retention, outweighing the negative conversion impact.

Results

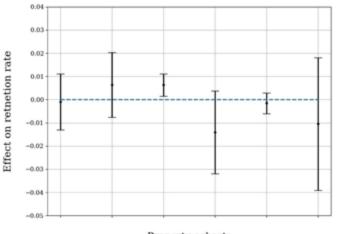
Online Results – Traveler Experiment

Experiments	Metrics	Value
Traveler facing	Conversion rate	-0.09% ± 0.07%
Supply facing	Cold properties with at least one booking	Positive
	Retention rate	Inconclusive

Next Steps

Next Steps

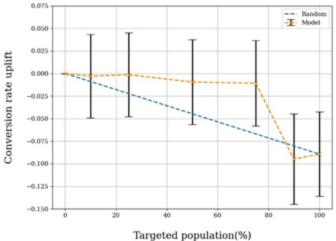




Property cohorts

Not all of our partner's cohorts respond the same to this treatment.

Conversion Rate Uplift Relative to the Targeted Populat



Limiting this boosting mechanism to less sensitive customers can potentially reduce boosting costs.

Conclusion

Conclusion

Problem:

Balancing between traveller and property owners interests in a two sided marketplace.

Approach:

A multi-funnel Recommender System boosting personalized properties while controlling the rate of this boost.

Results and next steps:

- A move in the right direction but a desired balance is still not achieved yet
- A room for improvement by:
 - Focusing on properties that respond positively to increased exposure.
 - Targeting customers who are less sensitive to properties without reviews.

Thank you

Ahmed Khaili ahmed.khaili@booking.com

Adva Hadrian adva.hadrian@booking.com