

A roadmap for privacy preserving tourist recommendation system

Alan Wecker^{1,*}, Noa Tuval¹, Alain Hertz², Muhammad Mahamid¹ and Tsvi Kuflik¹ ¹ University of Haifa, Haifa, Israel

> ² Polytechnique Montreal, Montreal Canada ^{18/10/2024} 1

RecTour 2024, Bari, Italy

Motivation

- System
 - User Interface
 - Hypercube Recommendation Engine
- Advantages and Challenges
- Practical considerations to work on mobile device

Evaluation

Preserving User Privacy

Risks

- Privacy invaded, Being targeted by service providers, ...
- Alternate opinion: User doesn't really care since they may be seen in restaurant which is public place
 - Different type of exposure
- Solutions
 - Anonymity
 - ▶ But: Not 100%, BZIP, etc...
 - Content Based Recommendations
 - Theoretically do not require to share any user information

Theoretical / practical solution

Content-based recommender system

- Item representation
 - Hypercube architecture
- User model
 - Reasoning on user rating given to items represented as binary vectors in the hypercube

GERAD

- Let U be a set of users
- Let *I* be a set of items
- Let *A* be a set of Boolean attributes.
- Let v(i, a) be the value of attribute a for item i.
- A vector x_i can be associated with every item *i* so that the *j*th component of x_i is equal to 1 if and only if v(i, a) is true, where *a* is the *j*th attribute

Example

- *I* is a set of restaurants
- 1^{st} attribute : low cost 2^{nd} attribute : offer vegetarian food 3^{rd} attribute: with a terrace facing the seaThe vector (0,1,1) is associated with an expensive restaurant, facing the sea, where vegetarians can eat.

GERAD

POLYTECHNIQUE Montréal

Every user $u \in U$ has preferences, and we can therefore also associate a vector y_u to u so that the *j*th component of y_u is equal to 1 if and only if u has interest for the *j*th attribute.

Example

If a user *u* likes vegetarian low price restaurants, even if they have no terrace facing the sea, then $y_u = (1,1,0)$.

The **Hamming distance** (number of different components) between $y_u = (1,1,0)$ and $x_i = (0,1,1)$ (which correspond to an expensive vegetarian restaurant facing the sea) is 2.

 $d(\mathbf{x}_i, \mathbf{y}_u) = d((0,11), (1,1,0)) = 2$

6

Item representation

Let A be an ordered set of *n* Boolean attributes.

Let Q_n be the *n*-dimensional hypercube with vertex set $\{0, 1\}^n$, and where two vertices are linked with an edge if and only if their differ in exactly one component. The items of the recommender system are vertices in Q_n \Rightarrow an item *i* is associated with a vertex $\mathbf{v}^i = (\mathbf{v}_1^i, ..., \mathbf{v}_n^i)$ where $\mathbf{v}_i^i = 1$ if item *i* has attribute *j*, $\mathbf{v}_i^i = 0$ otherwise.

GERA

Note that two items with the same attributes are associated with the same vertex in Q_n . We can therefore consider every vertex of Q_n as an item type.

18/10/2024

RecTour 2024, Bari, Italy

GERAD

User representation

The preferences of a user u of the recommender system are modeled as a vector $\mathbf{w}^{u} = (w_{1}^{u}, ..., w_{n}^{u})$ in $\{-1, 0, 1\}^{n}$ where

- $w_{j}^{u} = 1$ if u likes attribute j
- $w_{i}^{u} = 0$ if u does not care about attribute j
- $w_{ij}^{u} = -1$ if u does not like attribute *j*.

We define \mathbf{w}^u as the user profile

Approximation of the user profile

The distance $d(\mathbf{v}^i, \mathbf{w}^u)$ between an item *i* and the profile of user *u* is the number of components *j* (*i*.e., attributes) such that

- either $v_i^i = 1$ and $w_i^i = -1$ (i.e., the item *i* has attribute *j* that the user does not like
- or $v_i^j = 0$ and $w_i^{u_j} = 1$ (i.e., the item *i* does not have attribute *j* that the user likes).

A rating according to an *s*-star scale (i.e., a rating in {1, 2, ..., *s*) can be transformed into a distance to the user preferences.

- If a user gives *s* stars to an item *i*, it means that he likes all attributes in *i*, and dislikes all others.
- If a user gives 1 star to an item *i*, it means that he does not like the attributes in *i*, and likes all others.

We transform a rating r_i in {1,2,...,s} into a number δ_i of attributes that do not fit with the user preference.

$$\delta_i = \tau\left(r_i\right) = n - \frac{n\left(r_i - 1\right)}{s - 1}$$

$$r_i = 1 \Longrightarrow \delta_i = n$$
$$r_i = s \Longrightarrow \delta_i = 0$$

18/10/2024

RecTour 2024, Bari, Italy

Server

- Collect generic restaurant information
- ► Generate Hypercube
- User Device
 - User Interface
 - Search hyper-cube according to user preferences

- JSON file
 - Descriptive information
 - Restaurant Features
 - Translate multi-valued criteria in binary
 - Thus Cuisine gets translated into:
 - IsChinese
 - IsTurkish
 - IsFastFood

10

GERAD

POLYTECHNIQUE Montréal

EN PREMIÈRE CLASSE

LE GÉNIE

User Interface I (Initialization)

01:19 ⓑᢂ •	徽 氷 控 将 計 43% ■							
U Sign Up								
email								
Name								
Password								
Sign L	Jp							
Already have an account? Login								
RecTour 2024, Bari, Italy								
···· ° 🚫 🖸 🌆	Ì № III O <							

01:20 🖪 🖸 🕅 🗸	5				Q *	\Lee ∯ .ıl 42%∎
Suggeste	ed Restaura	ants				
Search re	staurants					
	Moshiko Haifa					Ψ٩
A G II						High ★
	Cafe Izik Haifa					Ψ٩
						High ★
	Coffee Mus Haifa	tafa				₽
						High ★
	Habeygal`e Haifa	Shel Sa	ba Marko			Ψ¶ \$
I C II	* &	You Mus	st Rate 6 Re	staurants	*	High 🛨
1.	Gourmi _{&/10}	/2024		11		>
	05	90			0	<

GERAD

POLYTECHNIQUE Montréal

LE GÉNIE EN PREMIÈRE CLASSE

User Interface II

01:23 🖪 🖸 🕅 🔹

😫 🕸 🖽 🖧 🗤 🖉

POLYTECHNIQUE Montréal

LE GÉNIE EN PREMIÈRE CLASSE

GERAD

← Restaurant Profile

Cafe Izik

קפה אייזיק

Rehov HaRav Veinrob 23 Tirat Carmel, Haifa Israel

\$

★ Rating: 5.0

★ Expected Rating: 5.0

***** #199 of 408

5 reviews

12

111

 \bigcirc

<

Cuisines

Italian

Establishment Types /2024

.... Go

18/10/2024

15

Practical Considerations

- Integer Linear Program on mobile
 - Find package
 - Port GLPK
 - Program subset needed
- Feature Reduction
 - Remove unique features (globally)
 - Remove features not contained in all items user ranked

Pros and Cons

Advantages

- Can model complex feature sets
- Need only a small number of user ratings
- Does not need to share user data

Challenges

- What is financial advantage to service provider
 - Usually personalized ads
- How can we share data among multiple personal devices
- Cold Start problem

16

GERAD

POLYTECHNIQUE Montréal

- Goal: See if system gives:
 - > 1) reasonable (i.e. similar user satisfaction) while maintaining privacy and
 - 2) reasonable (fast) response
- Method (for 1): Compare to another recommender system's ranking
- Method: (for 2): Measure speed, measure algorithmic complexity
- Remember goal is provide reasonable ranking (measured by user satisfaction), not necessarily the most precise or complete.

RecTour 2024, Bari, Italy

17

Thank you!

Questions?

