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Related Work
Non-Personalized Review 
Ranking● Text-based features (TF-IDF [6], contextual embeddings [4], 

readability [17], sentiment [35] and subject analysis [11]).

● Temporal features (time decay over review age, past reviewers 

average score [24])

● Multimodal (review images & textual embeddings [13, 27])

● Labels are a function of the number of the number of helpful votes



Related Work
Personalized Review Ranking

● Context-aware features (previous helpfulness votes, product 

purchases, past user reviews etc [15, 25, 33])

● Ground truth is subjective

● Graph based features (social relations between users [33], relations 

between users and products and users and reviews [15, 25])

● Usage of recommendation methods like matrix factorization [23]



Challenges in Modeling
Helpful Votes

● Votes are aggregated and anonymous

● Votes are sparse (~8.7% of reviews)

● Votes suffer from a presentation bias [23, 33]

● Cold-start problem [16]



Problem formulation
● Model the relationship between user context and review content

● Use the combination of reviews content with their corresponding 

reviewers’ context as positive labels

label=0

label=0

label=1

User context Review content



Dataset Creation



Text2Topic [9]

“The Bed  and the pillows were not  

comfortable , the room  was small 

and very cold  at night. Not at all 

what we expected.”

Bed Comfort Room sizeRoom Temperature

0.830.92 0.71
Negative

0.95



ML architecture - Bi Encoder - cosine 

Text: “best private pool in room, room was 
good and nice breakfast” Topic: “private swimming pool”

0/1 BCEWithLogitsLoss

text_features  = text_emb / text_emb.norm(dim=1)
topic_features  = topic_emb / topic_emb.norm(dim=1)
logits = (text_features  @ 
topic_features. t()).diag()

CLS CLS



● The training dataset contains 1.6M moderated English reviews from 2023 originating from 40,000 

unique properties. 

● We selected English reviews with ≥3 topics (using text2topic) and sampled properties with at 
least 10 reviews. All reviews are moderated and approved for publication.

Review dataset publication



Mapping between review UI and fields in 
dataset



Our Solution



* https://openai.com/blog/clip/
** https://github.com/openai/CLIP  20

Recap on CLIP 
(Contrastive Language–Image Pre-training) 

https://openai.com/blog/clip/
https://github.com/openai/CLIP


How?



Data Preprocessing

“Guest type: Couple
Guest country: Cobra Island
Room nights: 3
….”

guest_type guest_country room_nights month accommodation_type accommodation_country

Couple Cobra Island 3 August Hotel Greece

“Review title: Amazing!
Review positive: We enjoyed the pool, our clean room and the breakfast was fab!
Review negative: It would be nice to have fresh towels on a daily basis
Review score: 8”

review_title review_positive review_negative review_score

Amazing! We enjoyed the pool, our clean room 
and the breakfast was fab!

It would be nice to have fresh towels on a 
daily basis

8

Context textual representation

Review textual representation



Architecture

Context textual representation Review textual representation

BERT BERT

Token embeddings
(128 x 384)

Token embeddings
(128 x 384)

Mean Pooling Mean Pooling

Sentence embedding
(1 x 384)

Sentence embedding
(1 x 384)

Similarity (dot-product+sigmoid)



Loss Functions

Where:

● fi,j is the similarity between context i and review j

● N is the number of context-review pairs within the batch

f0,0 f0,1 f0,2 f0,3 f0,4

f1,0 f1,1 f1,2 f1,3 f1,4

f2,0 f2,1 f2,2 f2,3 f2,4

f3,0 f3,1 f3,2 f3,3 f3,4

f4,0 f4,1 f4,2 f4,3 f4,4

Review embeddings
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Batch sampling

Random batch sampling In-accommodation batch sampling

Might lead to learn differences between 
accommodations and reviews instead of 

between users and reviews within the 
same accommodation



Fine-tune Details

● Model: sentence-transformers/all-MiniLM-L6-v2 (link)

● Optimizer:

○ AdamW optimizer [20] 

○ Weight decay=0.01

○ Initial LR=3e-5

● Batch size: 64

● Warm up: 0.05

● Fine-tune took ~9h on a computation instance with 1 NVIDIA 

A10G GPU, 8 vCPU and 32GB RAM.

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


Results



Challenge



RecTour 2024 Challenge

● We will assess performance using MRR@10. Participants will submit a prediction 
file containing accommodation_id, user_id and top 10 review_ids sorted by their 
algorithm: 

 

https://workshops.ds-ifs.tuwien.ac.at/rectour24/rectour-2024-challenge/

accommodation_id user_id review_1 review_2 review_3 … review_10

1 24 123 764 129 325

● Data is published in https://tinyurl.com/RecTour24-Data

● There are 3 files (currently only training set data is available):
○ {set_name}_users.csv - holds the contextual data (user and accommodation)
○ {set_name}_reviews.csv - holds the review data (title, positive section, 

negative section etc)
○ {set_name}_matches.csv - holds the positive labels in form of matches 

between user_id, accommodation_id and review_id 

https://workshops.ds-ifs.tuwien.ac.at/rectour24/rectour-2024-challenge/


Statistics 
● 31 teams 

● 60 participants



Statistics 
● 31 teams 

● 60 participants



Statistics 



Top teams 



Top teams results after 
submission deadline



Thank you!
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