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Background
PhD at UAM, Spain

Evaluating RecSys with an IR perspective

Translating concepts from IR to RecSys

Postdoc at CWI, The Netherlands

Reproducibility & benchmarking

Assistant/Associate professor at UAM, Spain

Evaluation, sequences, POI, routes, …
This picture from unknown author is under license CC BY-NC-ND

https://serviciotraducciones.blogspot.com/2014/07/caracteristicas-que-debe-tener-un-buen.html
https://creativecommons.org/licenses/by-nc-nd/3.0/
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My journey into 
tourism RecSys
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• In 2017, we were contacted to create recommendations for “smart tourism”
• Initial impression: “that is easy, we know many families of recommenders and one 

should work”
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• In 2017, we were contacted to create recommendations for “smart tourism”
• Initial impression: “that is easy, we know many families of recommenders and one 

should work”

• Data was quite difficult to obtain
• Schedules and prices were important to be considered
• Still no user profiles, histories, or similar available
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• In 2017, we were contacted to create recommendations for “smart tourism”
• Initial impression: “that is easy, we know many families of recommenders and one 

should work”

• Data was quite difficult to obtain
• Schedules and prices were important to be considered
• Still no user profiles, histories, or similar available

• Efficiency was critical, while the number of items increased daily

• Practical solution: focus on creating feasible routes, after filtering out 
unpreferred venues
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Lessons learned
• Data is more important than the algorithm

• At least, it should come first!

• It is possible to provide suggestions without user 
profiles

• There are several, slightly different tasks that can 
be defined

• Each with different constraints, inputs, and 
outputs

• In some of them, how to evaluate was not 
obvious

• We found related areas with similar problems 
but different vocabularies
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Time for concrete 
examples

Data
Tasks

Evaluation
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Time for concrete 
examples

Data
Tasks

Evaluation
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Data

• How data from tourism really looks like?

• In user studies:

• Mobile applications
• Real users interacting with the recommender
• Feedback collected in “real-time”
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Data

• How data from tourism really looks like?

• In offline evaluation, Location-Based Social Networks (LBSN) dominate the literature
• Interactions = check-ins
• Social connections
• Geographical information
• Categorical attributes (e.g., food, museum)
• Time
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Data

• How data from tourism really looks like?

• In offline evaluation, Location-Based Social Networks (LBSN) dominate the literature

• In our study, between 2011 and 2020 we found:
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Data

• How data from tourism really looks like?

• In offline evaluation, Location-Based Social Networks (LBSN) dominate the literature

• But, how are these datasets collected? Let’s take Foursquare, the most popular LBSN

• The largest dataset (by Yang et al., 2016) describes the process as

• Why using a third-party API like Twitter? Because check-ins are not public

• For other datasets (like Gowalla and Brightkite), check-ins were collected when they were public
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Data

• How data from tourism really looks like?

• In offline evaluation, Location-Based Social Networks (LBSN) dominate the literature

• Are check-ins representative of tourists?
• They can be used by anyone on the LBSN

• Using these datasets may require extra work:
• Identification of local users
• Tourists vs locals: recommenders behave differently
• Different categories of tourists: varied number of clusters depending on dataset
• Data cleaning: removal of “private” residencies or other categories 

to actually work with Points-of-Interest (POI)
• Route or trip identification
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Data

• How data from tourism really looks like?

• In other areas, data is more fine-grained: coordinates taken from sensors like GPS, WiFi, or Bluetooth
• This requires inferring the venues that were actually visited

• Tripbuilder and YFCC100M exploit coordinates from
geo-located Flickr photos
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Data

• How data from tourism really looks like?

• How do we decide if a point is interesting enough
to be considered a POI?

• There are datasets focused on specific categories 
or tourism product – they may be useful, 
depending on the task:

• Restaurants

• Hotels

• Destinations

• Reviews
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Data

• How data from tourism really looks like?

• How do we decide if a point is interesting enough
to be considered a POI?

• There are datasets focused on specific categories 
or tourism product – they may be useful, 
depending on the task:

• Restaurants

• Hotels

• Destinations

• Reviews
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Data

• How data from tourism really looks like?

• How do we decide if a point is interesting enough
to be considered a POI?

• There are datasets focused on specific categories 
or tourism product – they may be useful, 
depending on the task:

• Restaurants

• Hotels

• Destinations

• Reviews
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Data

• How data from tourism really looks like?

• How do we decide if a point is interesting enough
to be considered a POI?

• There are datasets focused on specific categories 
or tourism product – they may be useful, 
depending on the task:

• Restaurants

• Hotels

• Destinations

• Reviews
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Data

• How data from tourism really looks like?

• Are any of these representations realistic?

• Back in 2002 the tourist life cycle was represented like this

• The distinction between before trip / on site / after trip
is not frequently made

• Besides, tourism is a group experience, none of these
datasets capture this

• See RecTour 2016 keynote by H. Werthner
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Time for concrete 
examples

Data
Tasks

Evaluation
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Tasks

• How do we define tourism recommendation? Which tasks are we trying to solve?

• It is a very complex area, with several sub-tasks, not all of them equally considered in the literature
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Tasks

• How do we define tourism recommendation? Which tasks are we trying to solve?
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Tasks

• How do we define tourism recommendation? Which tasks are we trying to solve?

• It seems the most popular ones are:
• Top-N POI recommendation
• Next-POI recommendation
• Itinerary/tour/route recommendation
• Others:

• Package recommendation
• Recommend music, clothes, or photos for a tour
• Personalisation of museum guides
• …
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Tasks

• How do we define tourism recommendation? Which tasks are we trying to solve?

• Some of these tasks may benefit from techniques or concepts from other areas:
• Operational research: find routes while satisfying given constraints

• Trajectory mining

• Urban computing

• Successful examples:
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Tasks

• How do we define tourism recommendation? Which tasks are we trying to solve?

• Some of these tasks may benefit from techniques or concepts from other areas:
• Operational research

• Trajectory mining: understanding routes as trajectories allow
to apply several data mining techniques and analyses

• Urban computing

• Successful examples:



A
le

ja
nd

ro
 B

el
lo

gi
n 

– 
R

ec
To

ur
 2

02
4

27

Tasks

• How do we define tourism recommendation? Which tasks are we trying to solve?

• Some of these tasks may benefit from techniques or concepts from other areas:
• Operational research

• Trajectory mining

• Urban computing: exploits data generated in cities

• Successful examples:
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Time for concrete 
examples

Data
Tasks

Evaluation
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Evaluation

• The proper evaluation method depends on the task

• Classical ranking evaluation is tied to one specific task: top-N POI recommendation

• If we consider sequentiality (next-POI/route recommendation), this aspect should be evaluated

• Ad-hoc metrics: inspired by F1, measuring 
whether a pair of POIs are adjacent

• Metrics from trajectory mining: trajectory distance measures
• Based on alignment: Dynamic Time Warping, Longest Common SubSequence
• Based on sub-trajectories: Hausdorff distance, segment distance
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Evaluation

• The proper evaluation method depends on the task

• There are two problems typically considered when evaluating recommenders in this domain:
• Sparsity: to address this, some works consider similarities between items, through categories usually
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Evaluation

• The proper evaluation method depends on the task

• There are two problems typically considered when evaluating recommenders in this domain:
• Sparsity: to address this, some works consider similarities between items, through categories usually
• Repetitions – related to the task (recommend new venues or next venue even if it is not new for user)

• Algorithms may have very different behaviour depending on this configuration

• This was also observed in trajectory recommendation, where it is better to avoid including revisits within the trajectory
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Evaluation

• The proper evaluation method depends on the task

• Of course, other dimensions should be considered:
• Bias

• Exposure

• Novelty

• Distance

• Sustainability
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Evaluation

• The proper evaluation method depends on the task

• Of course, other dimensions should be considered:
• Bias

• Exposure

• Novelty

• Distance

• Sustainability
Besides recent works on this topic, do not forget it was already mentioned in 2014 manifesto
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Evaluation

• The proper evaluation method depends on the task

• Are these evaluation metrics and methodologies capturing what is expected in tourism RecSys?
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Key takeaways

• Tourism is a rich domain, with several 

opportunities and use cases

• There are still many challenges ahead

• We should explore related areas and embrace 

their perspectives and methodologies
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Expanding the Boundaries: 
Recommender Systems and the 
Multifaceted World of Tourism

Alejandro Bellogin, Universidad Autónoma de Madrid
T h a n k  y o u

@abellogin

alejandro.bellogin@uam.es
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